Complex Analysis Springer | 4e51452b017494fd70dbf2f6a0757e4d

Complex Analysis This textbook is intended for a one semester course in complex analysis for upper level undergraduates in mathematics. Applications, primary motivations for this text, are presented hand-in-hand with theory enabling this text to serve well in courses for students in engineering or applied sciences. The overall aim in designing this text is to accommodate students of different mathematical backgrounds and to achieve a balance between presentations of rigorous mathematical proofs and applications. The text is adapted to enable maximum flexibility to instructors and to students who may also choose to progress through the material outside of coursework. Detailed examples may be covered in one course, giving the instructor the option to choose those that are best suited for discussion. Examples showcase a variety of problems with completely worked out solutions, assisting students in working through the exercises. The numerous exercises vary in difficulty from simple applications of formulas to more advanced project-type problems. Detailed hints accompany the more challenging problems. Multi-part exercises may be assigned to individual students, to groups as projects, or serve as further illustrations for the instructor. Widely used graphics clarify both concrete and abstract concepts, helping students visualize the proofs of many results. Freely accessible solutions to every-other-odd exercise are posted to the book’s Springer website. Additional solutions for instructors’ use may be obtained by contacting the authors directly.

Introduction to Complex Analysis in Several Variables The book contains a complete self-contained introduction to highlights of classical complex analysis. New proofs and some new results are included. All needed notions are developed within the book: with the exception of some basic facts which can be found in the first volume. There is no comparable treatment in the literature.

Lie Group Actions in Complex Analysis This text provides an accessible, self-contained and rigorous introduction to complex analysis and differential equations. Topics covered include holomorphic functions, Fourier series, ordinary and partial differential equations. The text is divided into two parts: part one focuses on complex analysis and part two on differential equations. Each part can be read independently, so in essence this text offers two books in one. In the second part of the book, some emphasis is given to the application of complex analysis to differential equations. Half of the book consists of approximately 200 worked out problems, carefully prepared for each part of theory, plus 200 exercises of variable levels of difficulty. Tailored to any course giving the first introduction to complex analysis or differential equations, this text assumes only a basic knowledge of linear algebra and differential and integral calculus. Moreover, the large number of examples, worked out problems and exercises makes this the ideal book for independent study.
Dispersion, Complex Analysis and Optical Spectroscopy This text covers many principal topics in the theory of functions of a complex variable. These include, in real analysis, set algebra, measure and topology, real- and complex-valued functions, and topological vector spaces. In complex analysis, they include polynomials and power series, functions holomorphic in a region, entire functions, analytic continuation, singularities, harmonic functions, families of functions, and convexity theorems.

A Complex Analysis Problem Book This textbook introduces the subject of complex analysis to advanced undergraduate and graduate students in a clear and concise manner. Key features of this textbook: effectively organizes the subject into easily manageable sections in the form of 50 class-tested lectures, uses detailed examples to drive the presentation, includes numerous exercise sets that encourage pursuing extensions of the material, each with an "Answers or Hints" section, covers an array of advanced topics which allow for flexibility in developing the subject beyond the basics, provides a concise history of complex numbers. An Introduction to Complex Analysis will be valuable to students in mathematics, engineering and other applied sciences. Prerequisites include a course in calculus.

Complex Analysis and Geometry Infinite dimensional holomorphy is the study of holomorphic or analytic functions over complex topological vector spaces. The terms in this description are easily stated and explained and allow the subject to project itself initially, and innocently, as a compact theory with well defined boundaries. However, a comprehensive study would include delving into, and interacting with, not only the obvious topics of topology, several complex variables theory and functional analysis but also, differential geometry, Jordan algebras, Lie groups, operator theory, logic, differential equations and fixed point theory. This diversity leads to a dynamic synthesis of ideas and to an appreciation of a remarkable feature of mathematics - its unity. Unity requires synthesis while synthesis leads to unity. It is necessary to stand back every so often, to take an overall look at one's subject and ask "How has it developed over the last ten, twenty, fifty years? Where is it going? What am I doing?" I was asking these questions during the spring of 1993 as I prepared a short course to be given at Universidade Federal do Rio de Janeiro during the following July. The abundance of suitable material made the selection of topics difficult. For some time I hesitated between two very different aspects of infinite dimensional holomorphy, the geometric-algebraic theory associated with bounded symmetric domains and Jordan triple systems and the topological theory which forms the subject of the present book.

Complex Analysis This book discusses a variety of topics in mathematics and engineering as well as their applications, clearly explaining the mathematical concepts in the simplest possible way and illustrating them with a number of solved examples. The topics include real and complex analysis, special functions and analytic number theory, q-series, Ramanujan's mathematics, fractional calculus, Clifford and harmonic analysis, graph theory, complex analysis, complex dynamical systems, complex function spaces and operator theory, geometric analysis of complex manifolds, geometric function theory, Riemannian surfaces, Teichmüller spaces and Kleinian groups, engineering applications of complex analytic methods, nonlinear analysis, inequality theory, potential theory, partial differential equations, numerical analysis, fixed-point theory, variational inequality, equilibrium problems, optimization problems, stability of functional equations, and mathematical physics. It includes papers presented at the 24th International Conference on Finite or Infinite Dimensional Complex Analysis and Applications (24ICFIDCAA), held at the Anand International College of Engineering, Jaipur, 22–26 August 2016. The book is a valuable resource for researchers in real and complex analysis.

An Introduction to Classical Complex Analysis At its core, this concise textbook presents standard material for a first course in complex analysis at the advanced undergraduate level. This distinctive text will prove most rewarding for students who have a genuine passion for mathematics as well as certain mathematical maturity. Primarily aimed at undergraduates with working knowledge of real analysis and metric spaces, this book can also be used to instruct a graduate course. The text uses a conversational style with topics purposefully apportioned into 21 lectures, providing a suitable format for either independent study or lecture-based teaching. Instructors are invited to rearrange the order of topics according to their own vision. A clear and rigorous
exposition is supported by engaging examples and exercises unique to each lecture; a large number of exercises contain useful calculation problems. Hints are given for a selection of the more difficult exercises. This text furnishes the reader with a means of learning complex analysis as well as a subtle introduction to careful mathematical reasoning. To guarantee a student’s progression, more advanced topics are spread out over several lectures. This text is based on a one-semester (12 week) undergraduate course in complex analysis that the author has taught at the Australian National University for over twenty years. Most of the principal facts are deduced from Cauchy’s Independence of Homotopy Theorem allowing us to obtain a clean derivation of Cauchy’s Integral Theorem and Cauchy’s Integral Formula. Setting the tone for the entire book, the material begins with a proof of the Fundamental Theorem of Algebra to demonstrate the power of complex numbers and concludes with a proof of another major milestone, the Riemann Mapping Theorem, which is rarely part of a one-semester undergraduate course.

Complex Analysis The past several years have witnessed a striking number of important developments in Complex Analysis. One of the characteristics of these developments has been to bridge the gap existing between the theory of functions of one and of several complex variables. The Special Year in Complex Analysis at the University of Maryland, and these proceedings, were conceived as a forum where these new developments could be presented and where specialists in different areas of complex analysis could exchange ideas. These proceedings contain both surveys of different subjects covered during the year as well as many new results and insights. The manuscripts are accessible not only to specialists but to a broader audience. Among the subjects touched upon are Nevanlinna theory in one and several variables, interpolation problems in Cn, estimations and integral representations of the solutions of the Cauchy-Riemann equations, the complex Monge-Ampère equation, geometric problems in complex analysis in Cn, applications of complex analysis to harmonic analysis, partial differential equations.

Visual Complex Functions This book provides a comprehensive introduction to complex analysis in several variables. One major focus of the book is extension phenomena alien to the one-dimensional theory (Hartog’s Kugelsatz, theorem of Cartan-Thullen, Bochner’s theorem). The book primarily aims at students starting to work in the field of complex analysis in several variables and teachers who want to prepare a university lecture. Therefore, the book contains more than 50 examples and more than 100 supporting exercises.

Complex Analysis This very well written and accessible book emphasizes the reasons for studying measure theory, which is the foundation of much of probability. By focusing on measure, many illustrative examples and applications, including a thorough discussion of standard probability distributions and densities, are opened. The book also includes many problems and their fully worked solutions.

Complex Analysis This unusually lively textbook on complex variables introduces the theory of analytic functions, explores its diverse applications and shows the reader how to harness its powerful techniques. "Complex Analysis" offers new and interesting motivations for classical results and introduces related topics that do not appear in this form in other texts. Stressing motivation and technique, and complete with exercise sets, this volume may be used both as a basic text and as a reference. For this second edition, the authors have revised some of the existing material and have provided new exercises and solutions.

Problems in Real and Complex Analysis This carefully written textbook is an introduction to the beautiful concepts and results of complex analysis. It is intended for international bachelor and master programmes in Germany and throughout Europe; in the Anglo-American system of university education the content corresponds to a beginning graduate course. The book presents the fundamental results and methods of complex analysis and applies them to a study of elementary and non-elementary functions (elliptic functions, Gamma- and Zeta function including a proof of the prime number theorem ) and - a new feature in this context! - to exhibiting basic facts in the theory of several complex variables. Part of the book is a translation of the authors’ German text.
“Einführung in die komplexe Analysis”; some material was added from the by now almost “classical” text “Funktionentheorie” written by the authors, and a few paragraphs were newly written for special use in a master’s programme.

An Advanced Complex Analysis Problem Book Complex analysis can be a difficult subject and many introductory texts are just too ambitious for today’s students. This book takes a lower starting point than is traditional and concentrates on explaining the key ideas through worked examples and informal explanations, rather than through "dry" theory.

Problems and Solutions for Complex Analysis This book provides a systematic introduction to functions of one complex variable. Its novel feature is the consistent use of special color representations – so-called phase portraits – which visualize functions as images on their domains. Reading Visual Complex Functions requires no prerequisites except some basic knowledge of real calculus and plane geometry. The text is self-contained and covers all the main topics usually treated in a first course on complex analysis. With separate chapters on various construction principles, conformal mappings and Riemann surfaces it goes somewhat beyond a standard programme and leads the reader to more advanced themes. In a second storyline, running parallel to the course outlined above, one learns how properties of complex functions are reflected in and can be read off from phase portraits. The book contains more than 200 of these pictorial representations which endow individual faces to analytic functions. Phase portraits enhance the intuitive understanding of concepts in complex analysis and are expected to be useful tools for anybody working with special functions – even experienced researchers may be inspired by the pictures to new and challenging questions. Visual Complex Functions may also serve as a companion to other texts or as a reference work for advanced readers who wish to know more about phase portraits.

Measure, Integral and Probability "This book presents a basic introduction to complex analysis in both an interesting and a rigorous manner. It contains enough material for a full year's course, and the choice of material treated is reasonably standard and should be satisfactory for most first courses in complex analysis. The approach to each topic appears to be carefully thought out both as to mathematical treatment and pedagogical presentation, and the end result is a very satisfactory book." --MATHSCINET

Complex Analysis on Infinite Dimensional Spaces The KSCV Symposium, the Korean Conference on Several Complex Variables, started in 1997 in an effort to promote the study of complex analysis and geometry. Since then, the conference met semi-regularly for about 10 years and then settled on being held biannually. The sixth and tenth conferences were held in 2002 and 2014 as satellite conferences to the Beijing International Congress of Mathematicians (ICM) and the Seoul ICM, respectively. The purpose of the KSCV Symposium is to organize the research talks of many leading scholars in the world, to provide an opportunity for communication, and to promote new researchers in this field.

From Real to Complex Analysis Now in its fourth edition, the first part of this book is devoted to the basic material of complex analysis, while the second covers many special topics, such as the Riemann Mapping Theorem, the gamma function, and analytic continuation. Power series methods are used more systematically than is found in other texts, and the resulting proofs often shed more light on the results than the standard proofs. While the first part is suitable for an introductory course at undergraduate level, the additional topics covered in the second part give the instructor of a graduate course a great deal of flexibility in structuring a more advanced course.

Functions of One Complex Variable I In this concise introduction to the classical theory of one complex variable the content is driven by techniques and examples, rather than definitions and theorems.
Complex Analysis 2 This book is devoted to dispersion theory in linear and nonlinear optics. Dispersion relations and methods of analysis in optical spectroscopy are derived with the aid of complex analysis. The book introduces the mathematical basis and derivations of various dispersion relations that are used in optical spectroscopy. In addition, it presents the dispersion theory of the nonlinear optical processes which are essential in modern optical spectroscopy. The book includes new methods such as the maximum entropy model for wavelength-dependent spectra analysis.

Introduction to Complex Analysis This book is an attempt to cover some of the salient features of classical, one variable complex function theory. The approach is analytic, as opposed to geometric, but the methods of all three of the principal schools (those of Cauchy, Riemann and Weierstrass) are developed and exploited. The book goes deeply into several topics (e.g. convergence theory and plane topology), more than is customary in introductory texts, and extensive chapter notes give the sources of the results, trace lines of subsequent development, make connections with other topics, and offer suggestions for further reading. These are keyed to a bibliography of over 1,300 books and papers, for each of which volume and page numbers of a review in one of the major reviewing journals is cited. These notes and bibliography should be of considerable value to the expert as well as to the novice. For the latter there are many references to such thoroughly accessible journals as the American Mathematical Monthly and L'Enseignement Mathématique. Moreover, the actual prerequisites for reading the book are quite modest; for example, the exposition assumes no prior knowledge of manifold theory, and continuity of the Riemann map on the boundary is treated without measure theory.

Complex Analysis in one Variable From the reviews: " In sum, the volume under review is the first quarter of an important work that surveys an active branch of modern mathematics. Some of the individual articles are reminiscent in style of the early volumes of the first Ergebnisse series and will probably prove to be equally useful as a reference; for the appropriate reader, they will be valuable sources of information about modern complex analysis." Bulletin of the Am.Math.Society, 1991 " This remarkable book has a helpfully informal style, abundant motivation, outlined proofs followed by precise references, and an extensive bibliography; it will be an invaluable reference and a companion to modern courses on several complex variables." ZAMP, Zeitschrift für Angewandte Mathematik und Physik, 1990

The Real and the Complex: A History of Analysis in the 19th Century This is an exercises book at the beginning graduate level, whose aim is to illustrate some of the connections between functional analysis and the theory of functions of one variable. A key role is played by the notions of positive definite kernel and of reproducing kernel Hilbert space. A number of facts from functional analysis and topological vector spaces are surveyed. Then, various Hilbert spaces of analytic functions are studied.

A Course in Complex Analysis This book discusses all the major topics of complex analysis, beginning with the properties of complex numbers and ending with the proofs of the fundamental principles of conformal mappings. Topics covered in the book include the study of holomorphic and analytic functions, classification of singular points and the Laurent series expansion, theory of residues and their application to evaluation of integrals, systematic study of elementary functions, analysis of conformal mappings and their applications—making this book self-sufficient and the reader independent of any other texts on complex variables. The book is aimed at the advanced undergraduate students of mathematics and engineering, as well as those interested in studying complex analysis with a good working knowledge of advanced calculus. The mathematical level of the exposition corresponds to advanced undergraduate courses of mathematical analysis and first graduate introduction to the discipline. The book contains a large number of problems and exercises, making it suitable for both classroom use and self-study. Many standard exercises are included in each section to develop basic skills and test the understanding of concepts. Other problems are more theoretically oriented and illustrate intricate points of the theory. Many additional problems are proposed as homework tasks whose level ranges from straightforward, but not overly simple, exercises to problems of considerable difficulty but of comparable interest.
Theory of Complex Functions A lively and vivid look at the material from function theory, including the residue calculus, supported by examples and practice exercises throughout. There is also ample discussion of the historical evolution of the theory, biographical sketches of important contributors, and citations - in the original language with their English translation - from their classical works. Yet the book is far from being a mere history of function theory, and even experts will find a few new or long forgotten gems here. Destined to accompany students making their way into this classical area of mathematics, the book offers quick access to the essential results for exam preparation. Teachers and interested mathematicians in finance, industry and science will profit from reading this again and again, and will refer back to it with pleasure.

Complex Analysis The contributions to this volume are devoted to a discussion of state-of-the-art research and treatment of problems of a wide spectrum of areas in complex analysis ranging from pure to applied and interdisciplinary mathematical research. Topics covered include: holomorphic approximation, hypercomplex analysis, special functions of complex variables, automorphic groups, zeros of the Riemann zeta function, Gaussian multiplicative chaos, non-constant frequency decompositions, minimal kernels, one-component inner functions, power moment problems, complex dynamics, biholomorphic cryptosystems, fermionic and bosonic operators. The book will appeal to graduate students and research mathematicians as well as to physicists, engineers, and scientists, whose work is related to the topics covered.

Twenty-One Lectures on Complex Analysis This book contains a history of real and complex analysis in the nineteenth century, from the work of Lagrange and Fourier to the origins of set theory and the modern foundations of analysis. It studies the works of many contributors including Gauss, Cauchy, Riemann, and Weierstrass. This book is unique owing to the treatment of real and complex analysis as overlapping, inter-related subjects, in keeping with how they were seen at the time. It is suitable as a course in the history of mathematics for students who have studied an introductory course in analysis, and will enrich any course in undergraduate real or complex analysis.

Geometric Complex Analysis The present book is meant as a text for a course on complex analysis at the advanced undergraduate level, or first-year graduate level. Somewhat more material has been included than can be covered at leisure in one term, to give opportunities for the instructor to exercise his taste, and lead the course in whatever direction strikes his fancy at the time. A large number of routine exercises are included for the more standard portions, and a few harder exercises of striking theoretical interest are also included, but may be omitted in courses addressed to less advanced students. In some sense, I think the classical German prewar texts were the best (Hurwitz-Courant, Knopp, Bieberbach, etc.) and I would recommend anyone to look through them. More recent texts have emphasized connections with real analysis, which is important, but at the cost of exhibiting succinctly and clearly what is peculiar about complex analysis: the power series expansion, the uniqueness of analytic continuation, and the calculus of residues. The systematic elementary development of formal and convergent power series was standard fare in the German texts, but only Cartan, in the more recent books, includes this material, which I think is quite essential, e.g., for differential equations. I have written a short text, exhibiting these features, making it applicable to a wide variety of tastes. The book essentially decomposes into two parts.

An Introduction to Complex Analysis An introduction to complex analysis for students with some knowledge of complex numbers from high school. It contains sixteen chapters, the first eleven of which are aimed at an upper division undergraduate audience. The remaining five chapters are designed to complete the coverage of all background necessary for passing PhD qualifying exams in complex analysis. Topics studied include Julia sets and the Mandelbrot set, Dirichlet series and the prime number theorem, and the uniformization theorem for Riemann surfaces, with emphasis placed on the three geometries: spherical, euclidean, and hyperbolic. Throughout, exercises range from the very simple to the challenging. The book is based on lectures given by the author at several universities, including UCLA, Brown University, La Plata, Buenos Aires, and the Universidad Autonomo de Valencia, Spain.
Complex Analysis The authors’ aim here is to present a precise and concise treatment of those parts of complex analysis that should be familiar to every research mathematician. They follow a path in the tradition of Ahlfors and Bers by dedicating the book to a very precise goal: the statement and proof of the Fundamental Theorem for functions of one complex variable. They discuss the many equivalent ways of understanding the concept of analyticity, and offer a leisure exploration of interesting consequences and applications. Readers should have had undergraduate courses in advanced calculus, linear algebra, and some abstract algebra. No background in complex analysis is required.

Complex Analysis The main topic of this book is the study of the interaction between two major subjects of modern mathematics, namely, the theory of Lie groups with its specific methods and ways of thinking on the one hand and complex analysis with all its analytic, algebraic and geometric aspects. More specifically, the author concentrates on the double role of Lie groups in complex analysis, namely, as groups of biholomorphic self-maps of certain complex analytic objects on the one hand and as a special class of complex manifolds with an additional strong structure on the other hand. The book starts from the basics of this subject and introduces the reader into many fields of recent research.

Complex Analysis I This unusual and lively textbook offers a clear and intuitive approach to the classical and beautiful theory of complex variables. With very little dependence on advanced concepts from several-variable calculus and topology, the text focuses on the authentic complex-variable ideas and techniques. Accessible to students at their early stages of mathematical study, this full first year course in complex analysis offers new and interesting motivations for classical results and introduces related topics stressing motivation and technique. Numerous illustrations, examples, and now 300 exercises, enrich the text. Students who master this textbook will emerge with an excellent grounding in complex analysis, and a solid understanding of its wide applicability.

Complex Analysis with Applications This volume includes 28 chapters by authors who are leading researchers of the world describing many of the up-to-date aspects in the field of several complex variables (SCV). These contributions are based upon their presentations at the 10th Korean Conference on Several Complex Variables (KSCV10), held as a satellite conference to the International Congress of Mathematicians (ICM) 2014 in Seoul, Korea. SCV has been the term for multidimensional complex analysis, one of the central research areas in mathematics. Studies over time have revealed a variety of rich, intriguing, new knowledge in complex analysis and geometry of analytic spaces and holomorphic functions which were “hidden” in the case of complex dimension one. These new theories have significant intersections with algebraic geometry, differential geometry, partial differential equations, dynamics, functional analysis and operator theory, and sheaves and cohomology, as well as the traditional analysis of holomorphic functions in all dimensions. This book is suitable for a broad audience of mathematicians at and above the beginning graduate-student level. Many chapters pose open-ended problems for further research, and one in particular is devoted to problems for future investigations.

Advances in Real and Complex Analysis with Applications All the exercises plus their solutions for Serge Lang's fourth edition of "Complex Analysis," ISBN 0-387-98592-1. The problems in the first 8 chapters are suitable for an introductory course at undergraduate level and cover power series, Cauchy's theorem, Laurent series, singularities and meromorphic functions, the calculus of residues, conformal mappings, and harmonic functions. The material in the remaining 8 chapters is more advanced, with problems on Schwartz reflection, analytic continuation, Jensen's formula, the Phragmen-Lindelof theorem, entire functions, Weierstrass products and meromorphic functions, the Gamma function and Zeta function. Also beneficial for anyone interested in learning complex analysis.

Complex Analysis This book is based on a first-year graduate course I gave three times at the University of Chicago. As it was addressed to graduate students who intended to specialize in mathematics, I tried to put the classical theory of functions of a complex variable in context, presenting proofs and
points of view which relate the subject to other branches of mathematics. Complex analysis in one variable is ideally suited to this attempt. Of course, the branches of mathematics one chooses, and the connections one makes, must depend on personal taste and knowledge. My own leaning towards several complex variables will be apparent, especially in the notes at the end of the different chapters. The first three chapters deal largely with classical material which is available in the many books on the subject. I have tried to present this material as efficiently as I could, and, even here, to show the relationship with other branches of mathematics. Chapter 4 contains a proof of Picard's theorem; the method of proof I have chosen has far-reaching generalizations in several complex variables and in differential geometry. The next two chapters deal with the Runge approximation theorem and its many applications. The presentation here has been strongly influenced by work on several complex variables.

Advancements in Complex Analysis This book is an outgrowth of lectures given on several occasions at Chalmers University of Technology and Goteborg University during the last ten years. As opposed to most introductory books on complex analysis, this one assumes that the reader has previous knowledge of basic real analysis. This makes it possible to follow a rather quick route through the most fundamental material on the subject in order to move ahead to reach some classical highlights (such as Fatou theorems and some Nevanlinna theory), as well as some more recent topics (for example, the corona theorem and the H1 BMO duality) within the time frame of a one-semester course. Sections 3 and 4 in Chapter 2, Sections 5 and 6 in Chapter 3, Section 3 in Chapter 5, and Section 4 in Chapter 7 were not contained in my original lecture notes and therefore might be considered special topics. In addition, they are completely independent and can be omitted with no loss of continuity. The order of the topics in the exposition coincides to a large degree with historical developments. The first five chapters essentially deal with theory developed in the nineteenth century, whereas the remaining chapters contain material from the early twentieth century up to the 1980s. Choosing methods of presentation and proofs is a delicate task. My aim has been to point out connections with real analysis and harmonic analysis, while at the same time treating classical complex function theory.

Complex Analysis The main idea of this book is to present a good portion of the standard material on functions of a complex variable, as well as some new material, from the point of view of functional analysis. The main object of study is the algebra H(G) of all holomorphic functions on the open set G, with the topology on H(G) of uniform convergence on compact subsets of G. From this point of view, the main theorem of the theory is Theorem 9.5, which concretely identifies the dual of H(G) with the space of germs of holomorphic functions on the complement of G. From this result, for example, Runge's approximation theorem and the global Cauchy integral theorem follow in a few short steps. Other consequences of this duality theorem are the Germain interpolation theorem and the Mittag-Leffler Theorem. The approach via duality is entirely consistent with Cauchy's approach to complex variables, since curvilinear integrals are typical examples of linear functionals. The prerequisite for the book is a one-semester course in complex variables at the undergraduate-graduate level, so that the elements of the local theory are supposed known. In particular, the Cauchy Theorem for the square and the circle are assumed, but not the global Cauchy Theorem in any of its forms. The second author has three times taught a graduate course based on this material at the University of Illinois, with good results.

Complex Analysis This second edition presents a collection of exercises on the theory of analytic functions, including completed and detailed solutions. It introduces students to various applications and aspects of the theory of analytic functions not always touched on in a first course, while also addressing topics of interest to electrical engineering students (e.g., the realization of rational functions and its connections to the theory of linear systems and state space representations of such systems). It provides examples of important Hilbert spaces of analytic functions (in particular the Hardy space and the Fock space), and also includes a section reviewing essential aspects of topology, functional analysis and Lebesgue integration. Benefits of the 2nd edition Rational functions are now covered in a separate chapter. Further, the section on conformal mappings has been expanded.

Topics in Complex Analysis All needed notions are developed within the book; with the exception of fundamentals which are presented in introductory
lectures, no other knowledge is assumed. Provides a more in-depth introduction to the subject than other existing books in this area. Over 400 exercises including hints for solutions are included.

Complex Analysis and Differential Equations. The purpose of this book is to provide an integrated course in real and complex analysis for those who have already taken a preliminary course in real analysis. It particularly emphasises the interplay between analysis and topology. Beginning with the theory of the Riemann integral (and its improper extension) on the real line, the fundamentals of metric spaces are then developed, with special attention being paid to connectedness, simple connectedness and various forms of homotopy. The final chapter develops the theory of complex analysis, in which emphasis is placed on the argument, the winding number, and a general (homology) version of Cauchy's theorem which is proved using the approach due to Dixon. Special features are the inclusion of proofs of Montel's theorem, the Riemann mapping theorem and the Jordan curve theorem that arise naturally from the earlier development. Extensive exercises are included in each of the chapters, detailed solutions of the majority of which are given at the end. From Real to Complex Analysis is aimed at senior undergraduates and beginning graduate students in mathematics. It offers a sound grounding in analysis; in particular, it gives a solid base in complex analysis from which progress to more advanced topics may be made.

Copyright code: 4e51452b017494f70dbf2f6a0757e4d